Niche construction overlaps with several other concepts deployed within ecology and evolution (Odling-Smee et al, 2003). Three of these are particularly noteworthy: ecosystem engineering, eco-evolutionary dynamics, and the extended phenotype.
Niche construction and ecosystem engineering are related ideas that arose independently in separate fields (niche construction in evolutionary biology, and ecosystem engineering in ecology), but which both place emphasis on changes that organisms make in environments.
Ecosystem engineers are organisms that modify their physical surroundings (e.g., light environment, physical habitat structure) so as to modulate the availability of resources or energy fluxes in an ecosystem (Jones et al. 1994, 1997). By comparison, niche constructors are organisms that alter selection pressures of a recipient organism by modifying any aspect of the abiotic and biotic environment. While evidence of ecosystem engineering would not constitute evidence of niche construction, nonetheless ecosystem engineers are excellent candidates for being niche constructors, particularly when they generate persistent ecosystem effects (Matthews et al, 2014).
In recent times, the two fields have been regarded as complementary and mutually reinforcing, with much cross-citation, and joint publications (e.g. Odling-Smee et al, 2013; Matthews et al, 2014).
Eco-evolutionary dynamics has a very broad focus that includes both the ecological and evolutionary responses of populations to interactions between organisms and their environments (Fussmann et al. 2007, Post & Palkovacs 2009). Evolution by niche construction is closely related to eco-evolutionary dynamics but the two concepts have different emphases. Eco-evolutionary dynamics must include at least two organisms and at least one evolutionary and one ecological effect, whilst neither of these conditions is necessary for evolution by niche construction (Matthews et al 2014). This means there are cases of evolution by niche construction that do not constitute eco-evolutionary dynamics.
Matthews et al (2014) emphasize that while some of the potential mechanisms of niche construction are well-studied, others are not, and that niche construction has value in drawing attention to these gaps. Several research areas in ecology and evolution could be expanded to test for new examples of evolution by niche construction by measuring evolutionary responses of organism-mediated environmental modifications.
Extended phenotypes are adaptations expressed outside of the body of the constructor, such as birds’ nests or termites’ mounds (Dawkins 1982). ‘Extended phenotype’ is a narrower term than niche construction, because it is restricted to forms of environmental modification that are biological adaptations.
In contrast, niche construction theory emphasizes that niche construction also incorporates evolutionary by-products that trigger evolutionary episodes. This is vital, since in ecosystems the ecological and evolutionary consequences that flow from niche-constructing by-products are likely to be as substantial as those flowing from niche-constructing adaptations.
Extended phenotypes also exclude aspects of niche construction that depend on acquired knowledge, for instance, human cultural processes. This is an important limitation for scholars of anthropogenic change, since very little human niche construction can accurately be characterized as a biological adaptation.
Finally, the environmental modifications produced by niche-constructing organisms, such as beaver’s dams or termite mounds, may persist through repetition and reconstruction for longer than the individual constructors, and may continue to modulate the impact of these effects on subsequent generations of the same or other populations, a legacy described as an ‘ecological inheritance’.
Theoretical models have shown that niche-constructing by-products, cultural niche construction and ecological inheritance can all strongly affects evolutionary dynamics (Laland et al 1999, 2001; Lehmann 2007, 2008; Creanza & Feldman, 2014).
Further distinctions between niche construction and the extended phenotype are discussed here.
Over-and-above the aforementioned distinctions, niche construction theory differs from the study of ecosystem engineering, eco-evolutionary dynamics, and the extended phenotype in suggesting that niche construction is an evolutionary process.
Niche construction theory emphasizes how niche construction can scale up across individuals in populations and over time to generate stable and directional modification of environmental components. As a result, niche construction generates consistent and sustained forms of natural selection, and thereby imposes biases on evolution (Laland et al, 2015).
Niche construction theory can be viewed as part of a wider movement that embraces a broader conception of evolutionary causation. For further discussion, see Niche construction and the EES.
Schrödinger E. 1944/2012. What is Life? With Mind and Matter and Autobiographical Sketches. Cambridge University Press: Cambridge UK. This accessible essay illustrates how Schrodinger was a pioneer of the niche constructive perspective.
Waddington CH. 1959 Evolutionary systems – animal and human. Nature 183:1634-1638. Waddington was ahead of his time in recognizing the importance of niche construction (which he called the ‘exploitative system’) for the evolutionary process.
Lewontin R. 1983. Gene, organism, and environment. In Evolution: From Molecules to Men, ed DS Bendall, pp. 273–85. Cambridge: Cambridge University Press. This accessible essay introduces the niche construction perspective and critiques conventional evolutionary approaches to adaptation.
Odling-Smee, F.J. Niche constructing phenotypes. In. H.C. Plotkin, ed., The Role of Behavior in Evolution, 73-132. Cambridge: MIT Press. Here Odling-Smee first makes the argument that niche construction should be recognized as an evolutionary process, and introduces the concept of ‘ecological inheritance.’